Fixed point theorems satisfying Φ - maps in G_{b}-metric space

\author{
D. R. Nhavi ${ }^{a}$ and C. T. Aage ${ }^{b}$
 ${ }^{a}$ and ${ }^{b}$ Department of Mathematics, School of Mathematical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, India-425001
 ```
E-mail: dnyaneshwar.nhavi@gmail.com
 E-mail: caage17@gmail.com

``` \\ \title{
FIXED POINT THEOREMS SATISFYING \(\Phi\) - MAPS IN \(G_{b}\)-METRIC SPACE
} \\ D. R. NHAVI AND C. T. AAGE \\ \begin{abstract}
In this paper, we prove fixed point theorems for self mapping \(T: X \rightarrow X\) in a complete \(G_{b^{-}}\) metric space for a \(\Phi\)-maps as \(\phi:[0,+\infty] \rightarrow[0,+\infty]\) be a nondecreasing map with \(\lim _{n, m \rightarrow \infty} \phi^{n}(t)=0\) for all \(t \epsilon(0,+\infty)\) and also prove uniqueness for such fixed points in respective contractions. Our results are supported by an example.
\end{abstract}
}

\section*{1. Introduction and Preliminaries}

The fixed point theory which plays very important role in applied mathematics and sciences. So the metric spaces are generalized by many authors by various ways. Czerwik [6] introduced \(b\)-metric space. Zead Mustafa and Brailey Sims [11] coined the concept of \(G\)-metric space. A. Aghajani, M. Abbas and J. R. Roshan 2 extended the \(G\)-metric space with \(b\)-metric space and develop the new structure of metric space, which is generalized metric space called \(G_{b}\)-metric space. In this paper for a self mapping in a \(G_{b}\) metric space we study some fixed point theorems under some contractions [15], [10]-[9] related to a nondecreasing map [4] \(\phi:[0,+\infty] \rightarrow[0,+\infty]\) with \(\lim _{n, m \rightarrow \infty} \phi^{n}(t)=0\) for all \(t \epsilon(0,+\infty)\).

\section*{2. Basic Concepts}

A \(b\)-metric space is defined by Czerwik [6] as follows.

Definition 2.1. [6] Let \(X\) be a non empty set and the mapping \(d: X \times X \rightarrow[0, \infty)\). The mapping \(d\) satisfies
(i) \(d(x, y)=0\) if and only if \(x=y\) for all \(x, y \in X\),
(ii) \(d(x, y)=d(y, x)\) for all \(x, y \in X\),

\footnotetext{
Key words and phrases. G-metric spaces; b-metric spaces; \(G_{b}\)-metric spaces; contraction mappings.
}
(iii) there exists a real number \(s \geq 1\) such that \(d(x, y) \leq s[d(x, z)+d(z, y)\) for all \(x, y, z \in X\). Then \(d\) is called a \(b\)-metric on \(X\). The ordered pair \((X, d)\) is called \(b\)-metric space with coefficient \(s\).

Definition 2.2. [11] Let \(X\) be a non empty set and the mapping \(G: X \times X \times X \rightarrow[0, \infty)\). The mapping \(G\) satisfies
(i) \(G(x, y, z)=0\) if and only if \(x=y=z\) for all \(x, y, z \in X\),
(ii) \(0<G(x, x, y)\) for all \(x, y \in X\),
(iii) \(G(x, x, y) \leq G(x, y, z)\) for all \(x, y, z \in X\) with \(z \neq y\),
(iv) \(G(x, y, z)=G(x, z, y)=G(y, z, x)=\ldots\). (symmetry in all three variables),
(v) \(G(x, y, z) \leq G(x, a, a)+G(a, y, z)\) for all \(x, y, z, a \in X\) (rectangle inequality). Then \(G\) is called a \(G\)-metric on \(X\). And \((X, G)\) is called \(G\)-metric space.

Aghajani and et.al [2] defined \(G_{b^{-}}\)metric space as follows
Definition 2.3. [2] Let \(X\) be a nonempty set and \(s \geq 1\) be a given real number. Suppose that a mapping \(G_{b}: X \times X \times X \rightarrow R^{+}\)satisfies:
(i) \(G_{b}(x, y, z)=0\) if \(x=y=z\) for all \(x, y, z \in X\),
(ii) \(0<G_{b}(x, x, y)\) for all \(x, y, z, \epsilon X\) with \(x \neq y\),
(iii) \(G_{b}(x, x, y) \leq G_{b}(x, y, z)\) for all \(x, y, z \in X\) with \(y \neq z\),
(iv) \(G_{b}(x, y, z)=G_{b}(p x, z, y)\), where \(p\) is a permutation of \(x, y, z\) (symmetry),
(v) \(G_{b}(x, y, z) \leq s\left[G_{b}(x, a, a)+G_{b}(a, y, z)\right]\).

Then \(G_{b}\) is called a generalized \(b\)-metric or \(G_{b}\)-metric on \(X\). The ordered pair \(\left(X, G_{b}\right)\) is called generalized \(b\)-metric or \(G_{b}\)-metric space.

Following example shows that a \(G_{b}\)-metric on \(X\) need not be a \(G\)-metric on \(X\).

Example 2.4. 2] Let \((X, G)\) be a \(G\)-metric space and \(G_{*}(x, y, z)=G(x, y, z)^{p}\); where \(p>1\) is a real number. Note that \(G_{*}\) is a \(G_{b}\)-metric with \(s=2^{P-1}\). Obviously, \(G_{*}\) satisfies conditions (i) to (iv) of the \(G_{b}\)-metric space, so it suffices to show that condition (v) of \(G_{b}\)-metric space is hold. If \(1<p<\infty\), then the convexity of the function \(f(x)=x^{p}(x>0)\) implies that \((a+b)^{p} \leq 2^{p-1}\left(a^{p}+b^{p}\right)\). Thus for each \(x, y, z, a \in X\) we obtain
\[
\begin{aligned}
& G_{*}(x, y, z)=G(x, y, z)^{p} \leq(G(x, a, a)+G(a, y, z))^{p} \\
& \leq 2^{p-1}\left(G(x, a, a)^{p}+G(a, y, z)^{p}\right) \\
&=2^{p-1}\left(G_{*}(x, a, a)+G_{*}(a, y, z)\right)
\end{aligned}
\]

So \(G_{*}\) is a \(G_{b}\)-metric with \(s=2^{p-1}\).

Also in the above example, \(\left(X, G_{*}\right)\) is not necessarily a \(G\)-metric space.
Example 2.5. Let \(X=R\) and let
\[
G_{b}(x, y, z)=\max \left\{|x-y|^{2},|y-z|^{2},|x-z|^{2}\right\} .
\]

Then \(\left(X, G_{b}\right)\) is a \(G_{b}\)-metric space with the coefficient \(s=2\).

Example 2.6. Let \(X=R^{+}, p>1\) a constant and \(G_{b}: X \times X \times X \rightarrow R^{+}\)be defined by
\[
\left.G_{b}(x, y, z)=\max (2 x, y, z)\right)^{p}-|4 x-y-z|^{p},
\]
for all \(x, y, z \in X\). Then \(\left(X, G_{b}\right)\) is a \(G_{b}\)-metric space with \(s>1\).
Definition 2.7. [2] Let \(X\) be a \(G_{b}\)-metric space. A sequence \(\left\{x_{n}\right\}\) in \(X\) is said to be :
(i) \(G_{b}\)-Cauchy sequence if, for each \(\epsilon>0\), there exists a positive integer \(n_{0} \in \mathbb{N}\) such that, for all \(m, n, l \geq n_{0}, G\left(x_{n}, x_{m}, x_{l}\right)<\epsilon\);
(ii) \(G_{b}\)-convergent to a point \(x \in X\) if, for each \(\epsilon>0\), there exists a positive integer \(n_{0} \in \mathbb{N}\) such that, for all \(m, n \geq n_{0}, G\left(x_{n}, x_{m}, x\right)<\epsilon\).

Proposition 2.8. [2] Let \(\left(X, G_{b}\right)\) be a \(G_{b}\)-metric space. Then the following are equivalents:
(i) \(\left\{x_{n}\right\}\) is \(G_{b}\)-convergent to \(x\).
(ii) \(G_{b}\left(x_{n}, x_{n}, x\right) \rightarrow 0\), as \(n \rightarrow \infty\).
(iii) \(G_{b}\left(x_{n}, x, x\right) \rightarrow 0\), as \(n \rightarrow \infty\).

Proposition 2.9. [2] Let \(\left(X, G_{b}\right)\) be a \(G_{b}\)-metric space. Then the following are equivalents:
(i) The sequence \(\left\{x_{n}\right\}\) is \(G_{b}\)-Cauchy.
(ii) For every \(\epsilon>0\), there exists \(n_{0} \in \mathbb{N}\) such that \(G_{b}\left(x_{n}, x_{m}, x_{m}\right)<\epsilon\), for all \(n, m \geq n_{0}\).

Definition 2.10. [2] A \(G_{b}\)-metric space \(X\) is called \(G_{b}\)-complete if every \(G_{b}\)-Cauchy sequence is \(G_{b}\)-convergent in \(X\).

\section*{3. Main Results}

Our first main result is
Definition 3.1. [4] Let \(\Phi\) be the set all functions \(\phi\) such that \(\phi:[0,+\infty] \rightarrow[0,+\infty]\) be a nondecreasing function with
(i) \(\lim _{n, m \rightarrow \infty} \phi^{n}(t)=0\) for all \(t \in(0,+\infty)\),
(ii) \(\phi(t)<t\) for all \(t \in(0,+\infty)\),
(iii) \(\phi(0)=0\).

Then \(\phi \in \Phi, \phi\) is called \(\Phi\)-maps.

Theorem 3.2. Let \(\left(X, G_{b}\right)\) be a complete \(G_{b}\)-metric space with and let \(T: X \rightarrow X\) be a mapping satisfying
\[
\begin{equation*}
G_{b}(T x, T y, T z) \leq k \phi\left(G_{b}(x, y, z)\right) \tag{3.1}
\end{equation*}
\]
for all \(x, y, z \in X, \phi \in \Phi\), sk \(\in[0,1)\). Then \(T\) has a unique fixed point (say \(p\), i.e., \(T p=p\) ), and \(T\) is \(G_{b}\)-continuous at \(p\).

Proof: Let \(x_{0} \in X\) and the mapping \(T: X \rightarrow X\) be a self map. Then, we get a sequence \(\left\{x_{n}\right\}\) in X such that \(x_{n}=T x_{n-1}=T^{n} x_{0}\). If \(x_{n}=x_{n-1}\) for each \(n \in \mathbb{N}\). Then clearly \(\left\{x_{n}\right\}\) is \(G_{b}\)-Cauchy sequence. Suppose \(x_{n} \neq x_{n-1}\) for each \(n \in \mathbb{N}\). We claim that \(\left\{x_{n}\right\}\) is a \(G_{b}\)-Cauchy sequence in \(X\), for \(n \in \mathbb{N}\). Consider for \(n \in \mathbb{N}\),
\[
\begin{aligned}
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) & =G_{b}\left(T x_{n-1}, T x_{n}, T x_{n}\right) \\
& \leq k \phi\left(G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)\right) \\
& \leq k^{2} \phi^{2}\left(G_{b}\left(x_{n-2}, x_{n-1}, x_{n-1}\right)\right) \\
& \leq k^{3} \phi^{3}\left(G_{b}\left(x_{n-3}, x_{n-2}, x_{n-2}\right)\right) \cdots \leq k^{n} \phi^{n}\left(G_{b}\left(x_{0}, x_{1}, x_{1}\right)\right) .
\end{aligned}
\]

For given \(\epsilon>0\), since \(\lim _{n \rightarrow \infty} \phi^{n}\left(G_{b}\left(x_{0}, x_{1}, x_{1}\right)\right)=0\) and \(\phi(\epsilon)<\epsilon\) there is an integer \(n_{0}\) such that
\[
\begin{equation*}
\phi^{n}\left(G_{b}\left(x_{0}, x_{1}, x_{1}\right)\right)<\frac{\epsilon}{s}-k \phi(\epsilon), s k \in[0,1), n \geq n_{0} . \tag{3.2}
\end{equation*}
\]

Hence
\[
\begin{equation*}
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)<\frac{\epsilon}{s}-k \phi(\epsilon), s k \in[0,1), n \geq n_{0} \tag{3.3}
\end{equation*}
\]

For \(n, m \in N, n<m\), we claim that
\[
\begin{equation*}
G_{b}\left(x_{n}, x_{m}, x_{m}\right)<\epsilon, \tag{3.4}
\end{equation*}
\]
for all \(m, n \geq n_{0}\). We prove inequality (3.4) by induction on \(m\), by equation (3.3) the inequality (3.4) hold for \(m=n+1\). Assume that inequality (3.4) hold for \(m=k\), therefore \(G_{b}\left(x_{n}, x_{k}, x_{k}\right)<\)
\(\epsilon\). Consider \(m=k+1\),
\[
\begin{aligned}
G_{b}\left(x_{n}, x_{m}, x_{m}\right) & =G_{b}\left(x_{n}, x_{k+1}, x_{k+1}\right) \\
& \leq s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+G_{b}\left(x_{n+1}, x_{k+1}, x_{k+1}\right)\right] \\
& \left.=s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+G_{b}\left(T x_{n}, T x_{k}, T x_{k}\right)\right)\right] \\
& \leq s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+\phi\left(G_{b}\left(x_{n}, x_{k}, x_{k}\right)\right)\right] \\
& <s\left[\frac{\epsilon}{s}-k \phi(\epsilon)+k \phi(\epsilon)\right] \\
& =\epsilon .
\end{aligned}
\]

Therefore, by induction on \(m\) the inequality (3.4) hold for all \(n \geq m \geq n_{0}\). Hence \(\left\{x_{n}\right\}\) is a \(G_{b}\)-Cauchy sequence in \(X\). By \(G_{b}\)-completeness of \(X\), there exists \(p \in X\) such that \(\left\{x_{n}\right\}\) is \(G_{b}\) converges to \(p\). Now we show that \(p\) is fixed point of \(T\). Suppose that \(T(p) \neq p\).
\[
\begin{aligned}
G_{b}\left(x_{n}, T p, T p\right) & \leq s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+G_{b}\left(x_{n+1}, T p, T p\right)\right] \\
& \leq s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+k \phi\left(G_{b}\left(x_{n}, p, p\right)\right)\right] \\
& <s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+k G_{b}\left(x_{n}, p, p\right)\right] .
\end{aligned}
\]

As \(n \rightarrow+\infty, x_{n} \rightarrow p\)
\(G_{b}(p, T p, T p) \leq 0\) and since \(G_{b}(p, T p, T p) \geq 0\). Then \(T p=p\).
This is contradiction to \(T p \neq p\). Therefore \(p\) is a fixed point of \(T\). For uniqueness suppose \(q \neq p\) and \(q\) is another fixed point of \(T, T q=q\).
\[
\begin{aligned}
G_{b}\left(x_{n}, T q, T q\right) & \leq s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+G_{b}\left(x_{n+1}, T q, T q\right)\right] \\
& \leq\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+k \phi\left(G_{b}\left(x_{n}, q, q\right)\right]\right. \\
& <s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+k G_{b}\left(x_{n}, q, q\right)\right] .
\end{aligned}
\]

As \(n \rightarrow \infty, x_{n} \rightarrow p\) and \(T q=q\), we get
\[
\begin{aligned}
G_{b}(p, q, q) & \leq s\left[G_{b}(p, p, p)+k G_{b}(p, q, q)\right] \\
& =\operatorname{sk} G_{b}(p, q, q)
\end{aligned}
\]

It follows that,
\[
(1-s k) G_{b}(p, q, q)<0
\]
\(G_{b}(p, q, q)=0\); since \(s k \in[0,1)\). To show that \(T\) is \(G_{b}\)-continuous at \(p\), let \(\left\{y_{n}\right\}\) be a sequence in \(X\) such that \(\lim _{n \rightarrow \infty} y_{n}=p\). Consider
\[
\begin{aligned}
G_{b}\left(p, T\left(y_{n}\right), T\left(y_{n}\right)\right) & \leq G_{b}\left(T p, T\left(y_{n}\right), T\left(y_{n}\right)\right. \\
& \leq k \phi\left(G_{b}\left(p, y_{n}, y_{n}\right)\right. \\
& <k G_{b}\left(p, y_{n}, y_{n}\right) .
\end{aligned}
\]

As As \(n \rightarrow \infty, y_{n} \rightarrow p\), we get
\[
\begin{aligned}
& G_{b}\left(p, T\left(y_{n}\right), T\left(y_{n}\right)<k G_{b}(p, p, p)\right. \\
& G_{b}\left(p, T\left(y_{n}\right), T\left(y_{n}\right)=0\right.
\end{aligned}
\]

Thus
\[
T\left(y_{n}\right)=p=T p .
\]

It is proved that \(T\) is \(G_{b}\)-continuous at \(p\).
Corollary 3.3. Let \(\left(X, G_{b}\right)\) be a complete \(G_{b}\)-metric space and let \(T: X \rightarrow X\) be a mapping satisfying for some \(m \in N\)
\[
\begin{equation*}
G_{b}\left(T^{m}(x), T^{m}(y), T^{m}(z)\right) \leq k \phi\left(G_{b}(x, y, z)\right) ; \tag{3.5}
\end{equation*}
\]
for all \(x, y, z \in X\), sk \(\in\left[0,1\right.\) ). Then \(T\) has a unique fixed point (say \(u\), i.e., \(T u=u\) ), and \(T^{m}\) is \(G_{b}\)-continuous at \(p\).

Proof: Here \(T(u)=T\left(T^{m} u\right)=T^{m+1} u=T^{m}(T u)\). Therefore by Theorem (3.2) we conclude that \(T^{m}\) has a fixed point say \(p\). Also we have \(T u\) a fixed point to \(T^{m}\). So \(T u=u\), and \(T\) has unique fixed point.

Corollary 3.4. Let \(\left(X, G_{b}\right)\) be a complete \(G_{b}\)-metric space and let \(T: X \rightarrow X\) be a mapping satisfying for some \(m \in N\)
\[
\begin{equation*}
G_{b}(T x, T y, T y) \leq k \phi\left(G_{b}(x, y, y)\right) ; \tag{3.6}
\end{equation*}
\]
for all \(x, y, z \in X, s k \in[0,1)\). Then \(T\) has a unique fixed point (say u, i.e., \(T u=u\) ), and \(T\) is \(G_{b}\)-continuous at \(p\).

Proof: Taking \(z=y\) in Theorem (3.2).
Corollary 3.5. Let \(\left(X, G_{b}\right)\) be a complete \(G_{b}\)-metric space and let \(T: X \rightarrow X\) be a mapping satisfying for some \(m \in N\)
\[
\begin{equation*}
G_{b}(T x, T y, T z) \leq k G_{b}(x, y, z) ; \tag{3.7}
\end{equation*}
\]
for all \(x, y, z \in X \quad k \in[0,1\) ). Then \(T\) has a unique fixed point (say \(u\), i.e., \(T u=u\) ), and \(T\) is \(G_{b}\)-continuous at \(p\).

Proof: To prove this corollary we define the \(\phi\) function as \(\phi:[0,+\infty] \rightarrow[0,+\infty]\) be a nondecreasing function with \(\lim _{n, m \rightarrow \infty} \phi^{n}(t)=0\) for all \(t \in(0,+\infty)\) and \(\phi(\omega)=\omega\). Clearly \(\phi\) is nondecreasing function with \(\lim _{n, m \rightarrow \infty} \phi^{n}(t)=0\) for all \(t \in(0,+\infty)\).

Since \(G_{b}(T x, T y, T z) \leq k \phi\left(G_{b}(x, y, z)\right)\); for all \(x, y, z \in X, s k \in[0,1)\). Therefore by Theorem (3.2) we get required result.

Corollary 3.6. Let \(\left(X, G_{b}\right)\) be a complete \(G_{b}\)-metric space and let \(T: X \rightarrow X\) be a mapping satisfying for some \(m \in N\)
\[
\begin{equation*}
G_{b}(T x, T y, T z) \leq \frac{G_{b}(x, y, z)}{1+G_{b}(x, y, z)} \tag{3.8}
\end{equation*}
\]
for all \(x, y, z \in X\). Then \(T\) has a unique fixed point (say \(u\), i.e., \(T u=u\) ), and \(T\) is \(G_{b}\)-continuous at \(p\).

Proof: To prove this corollary we define the \(\phi\) function as \(\phi:[0,+\infty] \rightarrow[0,+\infty]\) be a nondecreasing function with \(\lim _{n, m \rightarrow \infty} \phi^{n}(t)=0\) for all \(t \in(0,+\infty)\) and \(\phi(\omega)=\frac{k \omega}{1+k \omega}\). Clearly \(\phi\) is nondecreasing function with \(\lim _{n, m \rightarrow \infty} \phi^{n}(t)=0\) for all \(t \in(0,+\infty)\).
Since \(G_{b}(T x, T y, T z) \leq k \phi\left(G_{b}(x, y, z)\right)\); for all \(x, y, z \in X\). Therefore by Theorem (3.2) we get required result.

Theorem 3.7. Let \(\left(X, G_{b}\right)\) be a complete \(G_{b}\)-metric space and let \(T: X \rightarrow X\) be a mapping satisfying
\[
\begin{equation*}
G_{b}(T x, T y, T z) \leq k \phi\left(\max \left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(z, T z, T z)\right]\right) \tag{3.9}
\end{equation*}
\]
for all \(x, y, z \in X, s k \in[0,1)\). Then \(T\) has a unique fixed point (say \(p\), i.e., \(T p=p\) ), and \(T\) is \(G_{b}\)-continuous at \(p\).

Proof: Let \(x_{0} \in X\) and \(\left\{x_{n}\right\}\) be a sequence in X and \(x_{n}=T x_{n-1}=T^{n} x_{0}\). Assume that \(x_{n}=x_{n-1}\) for each \(n \in N\). Then clearly \(\left\{x_{n}\right\}\) is \(G_{b}\)-Cauchy sequence. Suppose \(x_{n} \neq x_{n-1}\) for each \(n \in \mathbb{N}\). We claim that \(\left\{x_{n}\right\}\) is a \(G_{b}\)-Cauchy sequence in \(X\), for \(n \in \mathbb{N}\). Consider
\[
\begin{aligned}
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) & =G_{b}\left(T x_{n-1}, T x_{n}, T x_{n}\right) \\
& \leq k \phi\left(\max \left[G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right]\right) \\
& \leq k \phi\left(\max \left[G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right]\right) .
\end{aligned}
\]
case i) If \(\max \left[G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right]=G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\).
Then \(G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) \leq k \phi\left(G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right)=G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\), which is impossible.
case ii) \(\max \left[G_{b}\left(x_{n-1}, x_{n}, x_{n}\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right]=G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)\), and hence
\[
\begin{aligned}
G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right) & \leq k \phi\left(G_{b}\left(x_{n-1}, x_{n}, x_{n}\right)\right) \\
& \leq k^{2} \phi^{2}\left(G_{b}\left(x_{n-2}, x_{n-1}, x_{n-1}\right)\right) \\
& \leq k^{3} \phi^{3}\left(G_{b}\left(x_{n-3}, x_{n-2}, x_{n-2}\right)\right) \cdots \leq k^{n} \phi^{n}\left(G_{b}\left(x_{0}, x_{1}, x_{1}\right)\right)
\end{aligned}
\]

By similar way from the proof of theorem (3.2); we can show that the sequence \(\left\{x_{n}\right\}\) is a Cauchy sequence in \(X\). By completeness, there exists \(p \in X\) such that \(\left\{x_{n}\right\}\) is \(G_{b}\) converges to \(p\). Now we show that \(p\) is fixed point of \(T\). Suppose that \(T p \neq p\).
\[
\begin{align*}
G_{b}\left(x_{n}, T p, T p\right) \leq & s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+G_{b}\left(x_{n+1}, T p, T p\right)\right] \\
\leq & s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+k \phi\left(\operatorname { m a x } \left[\left(G_{b}\left(x_{n}, p, p\right)\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right),\right.\right.\right. \\
& \left.\left.\left.G_{b}(p, T p, T p), G_{b}(p, T p, T p)\right]\right)\right] \\
\leq & s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+k \phi\left(\operatorname { m a x } \left[\left(G_{b}\left(x_{n}, p, p\right)\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right),\right.\right.\right. \\
& \left.\left.\left.G_{b}(p, T p, T p)\right]\right)\right] . \tag{3.10}
\end{align*}
\]
case i) \(\max \left[\left(G_{b}\left(x_{n}, p, p\right)\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right), G_{b}(p, T p, T p)\right]=G_{b}\left(x_{n}, p, p\right)\), then we have
\[
\begin{aligned}
G_{b}\left(x_{n}, T p, T p\right) & \leq s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+k \phi G_{b}\left(x_{n}, p, p\right)\right] \\
& \leq s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+k G_{b}\left(x_{n}, p, p\right)\right]
\end{aligned}
\]

Letting \(n \rightarrow \infty\), we conclude that
\[
G_{b}(p, T p, T p)<0 \Rightarrow p=T p
\]
. case ii) \(\max \left[\left(G_{b}\left(x_{n}, p, p\right)\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right), G_{b}(p, T p, T p)\right]=G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\) then we have
\[
\begin{aligned}
G_{b}\left(x_{n}, T p, T p\right) & \leq s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+k \phi G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right] \\
& \leq s(1+k) G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)
\end{aligned}
\]

Letting \(n \rightarrow \infty\), we conclude that
\[
\begin{aligned}
& G_{b}(p, T p, T p)<s(1+k) G_{b}(p, p, p) \\
& G_{b}(p, T p, T p)=0 .
\end{aligned}
\]

It follows that
\[
p=T p
\]
. case iii) \(\max \left[\left(G_{b}\left(x_{n}, p, p\right)\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right), G_{b}(p, T p, T p)\right]=G_{b}(p, T p, T p)\) then we have
\[
\begin{aligned}
G_{b}\left(x_{n}, T p, T p\right) & \leq s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+k \phi G_{b}(p, T p, T p)\right] \\
& \leq s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+k G_{b}(p, T p, T p)\right],
\end{aligned}
\]

Letting \(n \rightarrow \infty\), we conclude that
\[
\begin{aligned}
& G_{b}(p, T p, T p)<s\left[G_{b}(p, p, p)+k G_{b}(p, T p, T p)\right], \\
& G_{b}(p, T p, T p)=s k G_{b}(p, T p, T p) .
\end{aligned}
\]

It follows that
\[
\begin{aligned}
(1-s k) G_{b}(p, T p, T p) & <0 \\
G_{b}(p, T p, T p) & =0 ; s k \in[0,1) \\
p & =T p
\end{aligned}
\]

This is contradiction to \(T p \neq p\). Therefore \(p\) is a fixed point of \(T\). For uniqueness suppose \(q \neq p\) and \(q\) is another fixed point of \(T\), and \(T q=q\).
\[
\begin{aligned}
G_{b}\left(x_{n}, T q, T q\right) \leq & s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+G_{b}\left(x_{n+1}, T q, T q\right)\right] \\
< & s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+k \phi\left(\operatorname { m a x } \left[\left(G_{b}\left(x_{n}, q, q\right)\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right.\right.\right. \\
& \left.\left.\left.G_{b}(q, T q, T q), G_{b}(q, T q, T q)\right]\right)\right] \\
< & s\left[G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)+k \phi\left(\operatorname { m a x } \left[\left(G_{b}\left(x_{n}, q, q\right)\right), G_{b}\left(x_{n}, x_{n+1}, x_{n+1}\right)\right.\right.\right. \\
& \left.\left.\left.G_{b}(q, T q, T q)\right]\right)\right] .
\end{aligned}
\]

This is same as equation (3.10) we replace \(p\) by \(q\) in equation (3.10) and as \(n \rightarrow \infty, x_{n} \rightarrow p\) and \(T q=q\).
\[
\begin{aligned}
G_{b}(p, q, q) & =0 \\
p & =q .
\end{aligned}
\]

To show that \(T\) is \(G_{b}\)-continuous at \(p\), let \(\left\{y_{n}\right\}\) be a sequence in \(X\) such that \(\lim _{n \rightarrow \infty} y_{n}=p\). Consider
\[
\begin{aligned}
G_{b}\left(p, T\left(y_{n}\right), T\left(y_{n}\right)\right) & \leq G_{b}\left(T p, T\left(y_{n}\right), T\left(y_{n}\right)\right. \\
& \leq k \phi\left(\max \left[G_{b}\left(p, y_{n}, y_{n}\right), G_{b}(p, T p, T p), G_{b}\left(y_{n}, T\left(y_{n}\right), T\left(y_{n}\right)\right), G_{b}\left(y_{n}, T\left(y_{n}\right), T\left(y_{n}\right)\right)\right]\right) .
\end{aligned}
\]

As \(n \rightarrow \infty, y_{n} \rightarrow p\)
\[
\begin{aligned}
& G_{b}\left(p, T\left(y_{n}\right), T\left(y_{n}\right)<k G_{b}(p, p, p)\right. \\
& G_{b}\left(p, T\left(y_{n}\right), T\left(y_{n}\right)=0 .\right.
\end{aligned}
\]

Thus
\[
T\left(y_{n}\right)=p=T p .
\]

It is proved that \(T\) is \(G_{b}\)-continuous at \(p\).
Corollary 3.8. Let \(\left(X, G_{b}\right)\) be a complete \(G_{b}\)-metric space and let \(T: X \rightarrow X\) be a mapping satisfying for some \(m \in N\)
\[
\begin{equation*}
G_{b}(T x, T y, T z) \leq k \max \left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(z, T z, T z)\right] \tag{3.11}
\end{equation*}
\]
for all \(x, y, z \in X\) and \(s k \in[0,1)\). Then \(T\) has a unique fixed point (say \(u\), i.e., \(T u=u\) ), and \(T\) is \(G_{b}\)-continuous at \(p\).

Proof: To prove this corollary we define the \(\phi\) function as \(\phi:[0,+\infty] \rightarrow[0,+\infty]\) be a nondecreasing function with \(\lim _{n, m \rightarrow \infty} \phi^{n}(t)=0\) for all \(t \in(0,+\infty)\) and \(\phi(\omega)=k \omega\). Clearly \(\phi\) is nondecreasing function with \(\lim _{n, m \rightarrow \infty} \phi^{n}(t)=0\) for all \(t \in(0,+\infty)\).
Since \(G_{b}(T x, T y, T z) \leq k \phi\left(\max \left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(z, T z, T z)\right]\right)\); for all \(x, y, z \in X\). Therefore by Theorem (3.7) we get required result.

Corollary 3.9. Let \(\left(X, G_{b}\right)\) be a complete \(G_{b}\)-metric space and let \(T: X \rightarrow X\) be a mapping satisfying for some \(m \in N\)
\[
\begin{equation*}
G_{b}(T x, T y, T z) \leq \frac{M(x, y, z)}{1+M(x, y, z)} \tag{3.12}
\end{equation*}
\]
where \(M(x, y, z)=\operatorname{kmax}\left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(z, T z, T z)\right]\); for all \(x, y, z \in\) \(X\). Then \(T\) has a unique fixed point (say \(u\), i.e., \(T u=u\) ), and \(T\) is \(G_{b}\)-continuous at \(p\).

Proof: To prove this corollary we define the \(\phi\) function as \(\phi:[0,+\infty] \rightarrow[0,+\infty]\) be a nondecreasing function with \(\lim _{n, m \rightarrow \infty} \phi^{n}(t)=0\) for all \(t \in(0,+\infty)\) and \(\phi(\omega)=\frac{\omega}{1+\omega}\). Clearly \(\phi\) is nondecreasing function with \(\lim _{n, m \rightarrow \infty} \phi^{n}(t)=0\) for all \(t \in(0,+\infty)\).
Since \(G_{b}(T x, T y, T z) \leq \phi(M(x, y, z))\); for all \(x, y, z \in X\). Therefore by Theorem (3.7) we get required result.

Example 3.10. Let us define \(G_{b}(x, y, z)=|x-y|+|y-z|+|x-z|\) and let \(x \in X\). Then \(\left(X, G_{b}\right)\) be a complete \(G_{b}\)-metric space. Let \(T(x)=\frac{x}{3}\). Without loss of generality, we assume \(x>y>z\) and \(\phi(t)=t\) Then
(i)
\[
\begin{aligned}
G_{b}(T x, T y, T z) & =\left|\frac{x}{3}-\frac{y}{3}\right|+\left|\frac{y}{3}-\frac{z}{3}\right|+\left|\frac{x}{3}-\frac{z}{3}\right| \\
& =\frac{1}{3}[|x-y|+|y-z|+|x-z|] \\
& \leq \frac{1}{2}[|x-y|+|y-z|+|x-z|] \\
& =k\left(G_{b}(x, y, z)\right) \\
& =k \phi\left(G_{b}(x, y, z)\right) .
\end{aligned}
\]
(ii)
\[
\begin{aligned}
G_{b}(T x, T y, T z) & =\left|\frac{x}{3}-\frac{y}{3}\right|+\left|\frac{y}{3}-\frac{z}{3}\right|+\left|\frac{x}{3}-\frac{z}{3}\right| \\
& \leq 2 k\left|\left(x-\frac{x}{3}\right)\right| \\
& =k \max \left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(T x, y, z)\right] \\
& =k \phi\left(\max \left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(z, T z, T z)\right]\right) .
\end{aligned}
\]

Example 3.11. Let us define \(G_{b}(x, y, z)=|2 x-y|+|2 y-z|+|2 z-x|\) and let \(x \in X\). Then ( \(X, G_{b}\) ) be a complete \(G_{b}\)-metric space. Let \(T(x)=\frac{x}{3}\). Without loss of generality, we assume \(x>y>z\) and \(\phi(t)=t\) Then
(i)
\[
\begin{aligned}
G_{b}(T x, T y, T z) & =\left|\frac{2 x}{3}-\frac{y}{3}\right|+\left|\frac{2 y}{3}-\frac{z}{3}\right|+\left|\frac{2 z}{3}-\frac{x}{3}\right| \\
& \leq \frac{1}{2}[|2 x-y|+|2 y-z|+|2 z-x|] \\
& =k G_{b}(x, y, z) \\
& =k \phi\left(G_{b}(x, y, z)\right) .
\end{aligned}
\]
(ii)
\[
\begin{aligned}
G_{b}(T x, T y, T z) & =\left|\frac{2 x}{3}-\frac{y}{3}\right|+\left|\frac{2 y}{3}-\frac{z}{3}\right|+\left|\frac{2 z}{3}-\frac{x}{3}\right| \\
& \leq \frac{1}{2}\left[\left|2 x-\frac{x}{3}\right|+\left|\frac{2 x}{3}-\frac{x}{3}\right|+\left|\frac{2 x}{3}-x\right|\right] \\
& =\frac{1}{2} G_{b}(x, T x, T x) \\
& =k\left(\max \left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(z, T z, T z)\right]\right) \\
& =k \phi\left(\max \left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(z, T z, T z)\right]\right) .
\end{aligned}
\]

Example 3.12. Let us define \(G_{b}(x, y, z)=|x-y|+|y-z|+|x-z|\) and let \(x \in X\). Then \(\left(X, G_{b}\right)\) be a complete \(G_{b}\)-metric space. Let \(T(x)=\frac{x}{3}\). Without loss of generality, we assume \(x>y>z\) and \(\phi(t)=\frac{t}{2}\) Then
(i)
\[
\begin{aligned}
G_{b}(T x, T y, T z) & =\left|\frac{x}{3}-\frac{y}{3}\right|+\left|\frac{y}{3}-\frac{z}{3}\right|+\left|\frac{x}{3}-\frac{z}{3}\right| \\
& =\frac{1}{3}[|x-y|+|y-z|+|x-z|] \\
& \leq \frac{2}{3} \times \frac{1}{2}[|x-y|+|y-z|+|x-z|] \\
& =k\left[\frac{1}{2} G_{b}(x, y, z)\right] \\
& =k \phi\left(G_{b}(x, y, z)\right) .
\end{aligned}
\]
(ii)
\[
\begin{aligned}
G_{b}(T x, T y, T z) & =\left|\frac{x}{3}-\frac{y}{3}\right|+\left|\frac{y}{3}-\frac{z}{3}\right|+\left|\frac{x}{3}-\frac{z}{3}\right| \\
& \leq 2 k\left|\left(x-\frac{x}{3}\right)\right| \\
& =\frac{2}{3} \times \frac{1}{2}\left[2\left|x-\frac{x}{3}\right|\right] \\
& =k\left[\frac{1}{2} \max \left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(T x, y, z)\right]\right] \\
& =k \phi\left(\max \left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(z, T z, T z)\right]\right) .
\end{aligned}
\]

Example 3.13. Let us define \(G_{b}(x, y, z)=|2 x-y|+|2 y-z|+|2 z-x|\) and let \(x \in X\). Then \(\left(X, G_{b}\right)\) be a complete \(G_{b}\)-metric space. Let \(T(x)=\frac{x}{3}\). Without loss of generality, we assume \(x>y>z\) and \(\phi(t)=\frac{t}{2}\) Then
(i)
\[
\begin{aligned}
G_{b}(T x, T y, T z) & =\left|\frac{2 x}{3}-\frac{y}{3}\right|+\left|\frac{2 y}{3}-\frac{z}{3}\right|+\left|\frac{2 z}{3}-\frac{x}{3}\right| \\
& =\frac{1}{3}[|2 x-y|+|2 y-z|+|2 z-x|] \\
& \leq k\left(\frac{1}{2} G_{b}(x, y, z)\right) \\
& =k \phi\left(G_{b}(x, y, z)\right) .
\end{aligned}
\]
(ii)
\[
\begin{aligned}
G_{b}(T x, T y, T z) & =\left|\frac{2 x}{3}-\frac{y}{3}\right|+\left|\frac{2 y}{3}-\frac{z}{3}\right|+\left|\frac{2 z}{3}-\frac{x}{3}\right| \\
& \leq \frac{k}{2}\left[\left|2 x-\frac{x}{3}\right|+\left|\frac{2 x}{3}-\frac{x}{3}\right|+\left|\frac{2 x}{3}-x\right|\right] \\
& =k\left(\frac{1}{2} \max \left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(z, T z, T z)\right]\right) \\
& =k \phi\left(\max \left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(z, T z, T z)\right]\right) .
\end{aligned}
\]

Example 3.14. Let us define \(G_{b}(x, y, z)=|x-y|+|y-z|+|x-z|\) and let \(x \in X\). Then \(\left(X, G_{b}\right)\) be a complete \(G_{b}\)-metric space. Let \(T(x)=\frac{x}{3}\). Without loss of generality, we assume \(x>y>z\) and \(\phi(t)=\frac{t}{2}\) Then
(i)
\[
\begin{aligned}
G_{b}(T x, T y, T z) & =\left|\frac{x}{3}-\frac{y}{3}\right|+\left|\frac{y}{3}-\frac{z}{3}\right|+\left|\frac{x}{3}-\frac{z}{3}\right| \\
& =\frac{1}{3}[|x-y|+|y-z|+|x-z|] \\
& \leq \frac{2}{3} \times \frac{1}{2}[|x-y|+|y-z|+|x-z|] \\
& =k\left[\frac{1}{2} G_{b}(x, y, z)\right] \\
& =k \phi\left(G_{b}(x, y, z)\right) .
\end{aligned}
\]
(ii)
\[
\begin{aligned}
G_{b}(T x, T y, T z) & =\left|\frac{x}{3}-\frac{y}{3}\right|+\left|\frac{y}{3}-\frac{z}{3}\right|+\left|\frac{x}{3}-\frac{z}{3}\right| \\
& \leq 2 k\left|\left(x-\frac{x}{3}\right)\right| \\
& =\frac{2}{3} \times \frac{1}{2}\left[2\left|x-\frac{x}{3}\right|\right] \\
& =k\left[\frac{1}{2} \max \left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(T x, y, z)\right]\right] \\
& =k \phi\left(\max \left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(z, T z, T z)\right]\right)
\end{aligned}
\]

Example 3.15. Let us define \(G_{b}(x, y, z)=|2 x-y|+|2 y-z|+|2 z-x|\) and let \(x \in X\) and \(G_{b}(x, y, z)=G(x, y, z)^{p}\); where \(p>1\) is a real number. Then \(\left(X, G_{b}\right)\) be a complete \(G_{b}\)-metric space. Let \(T(x)=\frac{x}{3}\). Without loss of generality, we assume \(x>y>z\) and \(\phi(t)=\frac{t}{2}\) Then
(i)
\[
\begin{aligned}
G_{b}(T x, T y, T z) & =G(T x, T y, T z)^{p} \\
& =\left(\left|\frac{2 x}{3}-\frac{y}{3}\right|+\left|\frac{2 y}{3}-\frac{z}{3}\right|+\left|\frac{2 z}{3}-\frac{x}{3}\right|\right)^{p} \\
& =\left(\frac{1}{3}\right)^{p}[|2 x-y|+|2 y-z|+|2 z-x|]^{p} \\
& \leq k\left(\frac{1}{2} G_{b}(x, y, z)\right) \\
& =k \phi\left(G_{b}(x, y, z)\right)
\end{aligned}
\]
(ii)
\[
\begin{aligned}
G_{b}(T x, T y, T z) & =G(T x, T y, T z)^{p} \\
& =\left(\left|\frac{2 x}{3}-\frac{y}{3}\right|+\left|\frac{2 y}{3}-\frac{z}{3}\right|+\left|\frac{2 z}{3}-\frac{x}{3}\right|\right)^{p} \\
& \leq k\left(\frac{1}{2}\left[\left|2 x-\frac{x}{3}\right|+\left|\frac{2 x}{3}-\frac{x}{3}\right|+\left|\frac{2 x}{3}-x\right|\right]^{p}\right) \\
& =k\left(\frac{1}{2} \max \left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(z, T z, T z)\right]^{p}\right) \\
& =k \phi\left(\max \left[G_{b}(x, y, z), G_{b}(x, T x, T x), G_{b}(y, T y, T y), G_{b}(z, T z, T z)\right]\right)
\end{aligned}
\]

\section*{References}
[1] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered \(b\)-metric spaces, Math. Slovaca, in press.
[2] A. Aghajani, M. Abbas and J.R. Roshan, Common fixed point of generalized weak contractive mappings in partially ordered \(G_{b}\)-metric spaces, Filomat, in press.
[3] I. A. Bakhtin, The contraction mapping principle in quasi-metric spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30(1989),26-37.
[4] J. Matkowski, Fixed point theorems for mappings with a contractive iterate at a point, Proceedings of the American Mathematical Society, vol. 62, no. 2, pp. 344348, 1977.
[5] M. A. Khamsi, W. A. Kirk, An Introduction to Metric Spaces and Fixed Point Theory,A Wiley-lnterscience Publication.
[6] S. Czerwik, Contraction mappings in b-metric space, Acta Mat. Inf. Univ.Ostraviensis 1(1993), 5-11.
[7] W. A. Kirk and B. Sims, Handbook of metric fixed point theory, Kluwer, Academic Publishers, 0Dordrecht, 2001.
[8] W. Shatanawi, Hindawi Publishing Corporation, Fixed Point Theory and Applications, Volume 2010, Article ID 181650,9 pages doi:10.1155/2010/181650
[9] W. Shatanawi, Some fixed point theorems in ordered \(G\)-metric spaces and applications. Abstr. Appl. Anal. 2011, Article ID 126205 (2011).
[10] Z. Mustafa, A new structure for generalized metric spaces with applications to fixed point theory, Ph.D. Thesis, The University of Newcastle, Callaghan, Australia, 2005.
[11] Z. Mustafa and B. Sims, A new approach to generalized metric spaces Journal of Nonlinear and Convex Analysis, vol.7, no.2, pp. 289-297, 2006.
[12] Z. Mustafa and B. Sims, Fixed point theorems for contractive mappings in complete \(G\)-metric spaces. Fixed Point Theory Appl. 2009, Article ID 917175 (2009).
[13] Z. Mustafa and B. Sims, Some remarks concerning D-metric spaces, in: Proceedings of the International Conference on Fixed Point Theory and Applications, Yokohama, Japan, 2004, pp. 189198.
[14] Z. Mustafa and H. Obiedat, A fixed point theorem of Reich in G-metric spaces. CUBO 12(1), 83-93 (2010).
[15] Z. Mustafa, H. Obiedat and F. Awawdeh, Some fixed point theorem for mapping on complete Gmetric spaces, Fixed Point Theory and Applications, vol. 2008, Article ID 189870, 12 pages, 2008.
[16] Z. Mustafa, J.R. Roshan and V. Parvaneh, Coupled coincidence point results for ( \(\psi, \phi\) )-weakly contractive mappings in partially ordered Gb-metric spaces, Fixed Point Theory Appl. 2013:206 (2013).
[17] Z. Mustafa, W. Shatanawi and M. Bataineh, Existence of fixed point results in G-metric spaces. Int. J. Math. Math. Sci. 2009, Article ID 283028 (2009).
D. R. Nhavi Department of Mathematics

E-mail address: dnyaneshwar.nhavi@gmail.com
C. T. Aage Department of Mathematics North Maharashtra University, Jalgaon, India

E-mail address: caage17@gmail.com```

