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FIXED POINT THEOREMS SATISFYING ¢- MAPS IN G,-METRIC SPACE

D. R. NHAVI AND C. T. AAGE

ABSTRACT. In this paper, we prove fixed point theorems for self mapping 7" : X — X in a complete Gj-
metric space for a ®-maps as ¢ : [0, +o0] — [0, +00] be a nondecreasing map with limy, m—soc ¢™(t) = 0 for all
te(0, +00) and also prove uniqueness for such fixed points in respective contractions. Our results are supported

by an example.

1. INTRODUCTION AND PRELIMINARIES

The fixed point theory which plays very important role in applied mathematics and sciences.
So the metric spaces are generalized by many authors by various ways. Czerwik [0] introduced
b-metric space. Zead Mustafa and Brailey Sims [I1] coined the concept of G-metric space. A.
Aghajani, M. Abbas and J. R. Roshan [2] extended the G-metric space with b-metric space and
develop the new structure of metric space, which is generalized metric space called Gy-metric
space. In this paper for a self mapping in a GG, metric space we study some fixed point theorems
under some contractions [I5], [10]-[9] related to a nondecreasing map [4]¢ : [0, +o00] — [0, +o0]

with limy, ;00 ¢"(t) = 0 for all te(0, 4+00) .

2. Basic CONCEPTS

A b-metric space is defined by Czerwik [6] as follows.

Definition 2.1. [6] Let X be a non empty set and the mapping d : X x X — [0,00). The
mapping d satisfies

(i) d(z,y) =0 if and only if z = y for all z,y € X,

(ii) d(x,y) = d(y,x) for all z,y € X,

Key words and phrases. G-metric spaces; b-metric spaces; Gp-metric spaces; contraction mappings.
1



2 D. R. NHAVI AND C. T. AAGE

(iii) there exists a real number s > 1 such that d(z,y) < s[d(z, 2) +d(z,y) for all z,y,z € X.
Then d is called a b-metric on X. The ordered pair (X, d) is called b-metric space with

coefficient s.

Definition 2.2. [I1] Let X be a non empty set and the mapping G : X x X x X — [0,00).
The mapping G satisfies
(i) G(z,y,z) =0 if and only if z =y = z for all z,y,2z € X,
(i) 0 < G(z,z,y) for all z,y € X,
(ii) G(z,z,y) < G(x,y, 2) for all x,y,z € X with z # v,
)
)

G
(iv) G(z,y,2) = G(x, z,y) = G(y, z,x) = ..... (symmetry in all three variables),
G

(v

(z,y,2) < G(x,a,a) + G(a,y, z) for all z,y, z,a € X (rectangle inequality). Then G is
called a G-metric on X. And (X, G) is called G-metric space.

Aghajani and et.al [2] defined G- metric space as follows

Definition 2.3. [2] Let X be a nonempty set and s > 1 be a given real number. Suppose that
a mapping Gy : X x X x X — RT satisfies:

(i) Gy(z,y,2) =0if x =y =z forall z,y,z € X,
(i) 0 < Gy(z,x,y) for all z,y, z,eX with z # vy,

)
(iil) Gz, z,9y) < Gyp(x,y, z) for all x,y,z € X with y # z,
(iv) Gp(z,y,2) = Gy(pzx, z,y), where p is a permutation of z,y, z (symmetry),
)

(V Gb(x7 Y, Z) < S[Gb(xa a, CL) + Gb(aa Y, Z)]
Then Gy, is called a generalized b-metric or Gy-metric on X. The ordered pair (X, Gp) is called
generalized b-metric or Gy-metric space.

Following example shows that a Gy-metric on X need not be a G-metric on X.

Example 2.4. [2] Let (X, G) be a G-metric space and G.(x,y, z) = G(z,y, 2)?; where p > 1 is
a real number. Note that G, is a Gy-metric with s = 2F~1. Obviously, G, satisfies conditions
(i) to (iv) of the Gp-metric space, so it suffices to show that condition (v) of Gp-metric space
is hold. If 1 < p < oo, then the convexity of the function f(z) = zP(z > 0) implies that
(a+ b)P < 2P~ 1(aP 4 bP). Thus for each z,y, 2,a € X we obtain
G.(r,y,2) = G(x,y, 2)P < (G(x,a,a)+ G(a,y, z))?
=2"1(G,(x,a,a) + G.(a,y, 2)).

So G, is a Gy-metric with s = 2P~ 1.
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Also in the above example, (X, G,) is not necessarily a G-metric space.

Example 2.5. Let X = R and let
Gy(x,y, 2) = max{lz —y|*, [y — 2", |z — 2"},
Then (X, Gy) is a Gy-metric space with the coefficient s = 2.

Example 2.6. Let X = R, p > 1 a constant and G : X X X x X — R be defined by
Gb<x7y7 Z) = max(2$, Y, Z))p - |43§' — Y- Z|p7
for all z,y,z € X. Then (X, Gy) is a Gp-metric space with s > 1.

Definition 2.7. [2] Let X be a Gy-metric space. A sequence {z,} in X is said to be :

(i) Gp-Cauchy sequence if, for each € > 0, there exists a positive integer ng € N such that,
for all m,n,l > ng, G(x, T, ;) < €
(ii) Gy-convergent to a point x € X if, for each € > 0, there exists a positive integer no € N

such that, for all m,n > ng, G(zn, Tm, ) < €.

Proposition 2.8. [2] Let (X, Gy) be a Gy-metric space. Then the following are equivalents:
(i) {zn} is Gyp-convergent to x.
(i) Go(zp, xpn, ) = 0, as n — oo.

(iii) Gp(zp,z,2) = 0, as n — oo.

Proposition 2.9. [2] Let (X, Gy) be a Gy-metric space. Then the following are equivalents:
(i) The sequence {z,} is Gy-Cauchy.

(ii) For every e > 0, there exists ng € N such that Gy(xy, T, ) < €, for all n,m > ny.

Definition 2.10. [2] A Gy-metric space X is called Gy-complete if every Gy-Cauchy sequence

is Gp-convergent in X.

3. MAIN RESULTS

Our first main result is

Definition 3.1. [4] Let ® be the set all functions ¢ such that ¢ : [0, +oc] — [0,400] be a
nondecreasing function with
(1) limy, ;oo @™(t) = 0 for all ¢ € (0, +00),
(ii) ¢(t) <t for all ¢t € (0, 400),
(iii) ¢(0) = 0.
Then ¢ € @, ¢ is called P-maps.
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Theorem 3.2. Let (X,Gy) be a complete Gy-metric space with and let T : X — X be a

mapping satisfying
Gb<Tx7Ty7T’Z) < k¢(Gb(xay7z>> (31)

forallz,y,z € X, ¢ € ®, sk €[0,1). ThenT has a unique fized point (say p, i.e., Tp =p), and

T is Gy-continuous at p.
Proof: Let g € X and the mapping T : X — X be a self map. Then, we get a sequence
{z,} in X such that z, = Tz, 1 = T"xo. If x, = x,,_1 for each n € N. Then clearly {z,} is

G-Cauchy sequence. Suppose x,, # x,_1 for each n € N. We claim that {z,} is a G}, -Cauchy

sequence in X, for n € N. Consider for n € N,

Gy(@n, Tntr, Tnt1) = Gp(Tapor, Twn, Ty)
< k¢(Gb(xn717 Ln, l’n))
S k2¢2<Gb(xn727 Tn—1, 'rnfl))

<K (Gy(Tn_3,Tn_2,Tn_2)) - < k"™ (Gy(o, 21, 71)).

For given e > 0, since lim,,_,, ¢"(Gy(xo, 1, 21)) = 0 and ¢(€) < € there is an integer ngy such

that
" (Gy(xg, 21, 11)) < g — ko(e), sk €[0,1), n> no. (3.2)
Hence
Go(Tp, Tpit1, Tni1) < 2 — ko(e), sk €[0,1), n > ny. (3.3)
For n,m € N, n < m, we claim that
Go(Tp, T, Tr) < €, (3.4)

for all m,n > ngy. We prove inequality (3.4) by induction on m, by equation (3.3)) the inequality
(3.4) hold for m = n+1. Assume that inequality (3.4)) hold for m = k , therefore Gy(z,,, zx, xx) <
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€ . Consider m =k + 1,

Go(Tn, Ton, i) = Go(Tpy Tpey1, Thes1)
< 8[Go(@n, Tnsr, Tnt1) + Go(@nsr, T, Tiern)]
= $[Gp(Tn, Tpi1, Tnt1) + Go(Txy, Ty, Tay))]
< 5[Go(Tn, Tns1, Tng1) + O(Gy(Tn, T, 71))]
< sl — ko) + ko(e)]

= €.

Therefore, by induction on m the inequality (3.4) hold for all n > m > ny. Hence {z,} is a
Gp-Cauchy sequence in X. By Gj-completeness of X, there exists p € X such that {x,} is G}
converges to p. Now we show that p is fixed point of T'. Suppose that T'(p) # p.

Gb(l‘n, Tp, Tp) S &) [Gb(xm Tn+1, xn+1) + Gb(xn-i-l? Tp, Tp)}
S S[Gb<$n7 Tn+1, xn-{—l) + k¢(Gb(xn7pap))]

< S[Gb(xm Tn41, xn—&-l) + ka(‘rmpJ))]‘

Asn — 400, 2, = p
Gy(p, Tp, Tp) < 0 and since Gy(p, Tp,Tp) > 0. Then Tp = p.

This is contradiction to T'p # p. Therefore p is a fixed point of T'. For uniqueness suppose
q # p and ¢ is another fixed point of T, T'q = q.

Gb(l‘na TQ; TQ> < S[Gb(xna Tn+1, xn-&-l) + Gb(xn-i-l? Tqv Tq)]
S [Gb(xna Tn+41, xn—&—l) + kgb(Gb(xna q, Q)]

< S[Gb(l‘na Tn+1, xn—&—l) + ka(xn7 q, Q)]

Asn — oo, x, — p and Tq = q, we get

Gy(p,q,q) < s[Gy(p,p,p) + kGy(p, ¢, q)]

= skGy(p, q,q).

It follows that,

(1 —sk)Gu(p,q,9) <0
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Gu(p, q,q) = 0; since sk € [0,1). To show that T is G,-continuous at p, let {y,} be a sequence

in X such that lim, . y, = p. Consider
Go(p: T(Yn), T(yn)) < Go(Tp, T (yn), T (yn)
< ko(Go(p, Yns Yn)
< kGy(P, Yn Yn)-
As As n — o0, y, — p, we get
Go(p: T(yn), T (yn) < kGy(p,p, p)
Go(p, T(yn), T (yn) = 0.
Thus
T(yn) =p=Tp.

It is proved that 1" is Gp-continuous at p.

Corollary 3.3. Let (X, Gy) be a complete Gy-metric space and let T : X — X be a mapping
satisfying for some m € N

Gy(T™ (), T™(y), T™(2)) < ko(Gy(,y, 2)); (3.5)
for all x,y,z € X, sk € [0,1). Then T has a unique fized point (say u, i.e., Tu = u),and T™

18 Gy-continuous at p.

Proof: Here T'(u) = T(T™u) = T™"u = T™(Tu). Therefore by Theorem (3.2) we conclude
that T™ has a fixed point say p. Also we have Tu a fixed point to T™. So T'u = u, and T has

unique fixed point.

Corollary 3.4. Let (X, Gy) be a complete Gy-metric space and let T : X — X be a mapping

satisfying for some m € N

for all x,y,z € X, sk € [0,1). Then T has a unique fixed point (say u, i.e., Tu = u),and T is

Gy-continuous at p.
Proof: Taking z = y in Theorem (3.2).

Corollary 3.5. Let (X,Gy) be a complete Gy-metric space and let T : X — X be a mapping

satisfying for some m € N

Gy(Tx, Ty, Tz) < kGy(x,y, 2); (3.7)
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forall z,y,z € X k €[0,1). Then T has a unique fized point (say u, i.e., Tu = u), and T is

Gy-continuous at p.

Proof: To prove this corollary we define the ¢ function as ¢ : [0,+o0c] — [0,+0oc] be a
nondecreasing function with lim,, ,,— ¢"(t) = 0 for all ¢t € (0, 4+00) and ¢(w) = w. Clearly ¢
is nondecreasing function with lim,, ,;, . ¢"(t) = 0 for all ¢ € (0, +00).

Since Gy(Tx, Ty, Tz) < k¢(Go(x,y, 2)); for all x,y,z € X, sk € [0,1). Therefore by Theorem
(3.2) we get required result.

Corollary 3.6. Let (X,Gy) be a complete Gy-metric space and let T : X — X be a mapping

satisfying for some m € N

Gb(x7yaz)
Go(Tx, Ty, Tz) < : 3.8
b( Y )_1+Gb<l’,y,2) ( )
forallz,y,z € X. ThenT has a unique fized point (say u, i.e., Tu = u),and T is Gy-continuous

at p.

Proof: To prove this corollary we define the ¢ function as ¢ : [0,+o00c] — [0,+oc] be a

kw

Tins- Clearly

nondecreasing function with lim,, ;0 ¢™(t) = 0 for all ¢ € (0,400) and ¢(w) =
¢ is nondecreasing function with lim,, , . ¢™(t) = 0 for all ¢ € (0, +00).
Since Gy(Tz, Ty, Tz) < kp(Gy(x,y, 2)); for all x,y, z € X. Therefore by Theorem (3.2) we get

required result.

Theorem 3.7. Let (X,Gy) be a complete Gy-metric space and let T : X — X be a mapping
satisfying

Gb(Tx7 Ty? TZ) < k¢<max [Gb($7 Y, Z)a Gb(xa T{E, T$)a Gb(ya T% Ty)7 Gb(za TZ, TZ)] >a (39)
forall z,y,z € X,sk € [0,1). Then T has a unique fixed point (say p, i.e., Tp =p),and T is

Gy-continuous at p.

Proof: Let zp € X and {z,,} be a sequence in X and z,, = Tz,,_1 = T"xy. Assume that
T, = x,_1 for each n € N. Then clearly {z,} is G,-Cauchy sequence. Suppose z,, # z,_; for

cach n € N. We claim that {z,} is a G}, -Cauchy sequence in X, for n € N. Consider

Go(n, g1, Tny1) = Go(Txy 1, Txp, Txy,)
< kgb(max (Go(@n-1, 20, T0), Go(Tn1, Tn, ), Gy (Tn, Tng1, Tnsr), Gb(a:n,a:nﬂ,xnﬂ)})
< ko(max [Gy(Ta_1, Tn, Tn), Go(Tn, Tps1, Tns1)])-

case 1) If max [Gy(2p—1, Tn, Tn), Go(Tn, Tpg1, Tns1)] = Go(Tn, Tnt1, Tng1)-

Then Gy(zpn, Tpi1, Tni1) < kO(Gy(Tn, Tni1, Tni1)) = Go(Tn, Tni1, Tni1), which is impossible.
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case ii) max [Gb(xn_l, Ty )y Go(Tn, Ty, xn+1)] = Gy(zp_1,%n, T,), and hence
Go(Tn, Tpa1, Tni1) < kO(Go(Tp_1, Tn, Ty))
< K6 (G2, Tn1,n1))

<k (Gy(Tn_3, Tn9, Tn_2)) - < k"™ (Gy(wo, 71, 1)).

By similar way from the proof of theorem (3.2); we can show that the sequence {x,} is a Cauchy
sequence in X. By completeness, there exists p € X such that {x,} is G;, converges to p. Now

we show that p is fixed point of T'. Suppose that T'p # p.
G, TD, Tp) < 5[ G, nsr, nsr) + Golnss, T, Tp)]
<s Gb<xna Ln+1, anrl) =+ ka (mcm; [(Gb(xn7p> p)), Gb(xna Tpt1, anrl)a

Gy(p, Tp, Tp), Go(p, Tp, Tp)] )]

S S -Gb<xn7 Tn+i, xn—i—l) + kgb(maa: [(Gb(l‘n,p,p)), Gb('rTw Ln+1, xn—i—l);
Gy(p, Tp, Tp)]) | (3.10)

case 1) maz [(Gy(Tn, p. p)), Go(Tn, Tni1, Tns1), Go(p, Tp, Tp)| = Gy(xn,p, p), then we have

Gb(l’n, pr Tp) S S[Gb(xna Tn+1, xn—&—l) + k¢Gb(l'nap7p)]

S S[Gb(xna Tn+1, xn—&—l) + ka(l‘na}%p)]?
Letting n — oo, we conclude that
Gy(p, Tp,Tp) <0 =p="Tp

case 11) ma’x[(Gb(xnap7p))7Gb(xn)xn+l7xn+1)7Gb(p7 Tp7 Tp)} - Gb(xn,xn+1,xn+1) then we

have

Gb(xna Tp7 Tp) S S[Gb(ﬂfn, Tnt1, $n+1) + k¢Gb(xn7 Tnt1, $n+1)]

S 5<1 + k)Gb(ilZ’n, Tn+1, xn-&—l)?

Letting n — oo, we conclude that

Gy(p, Tp, Tp) < s(1+ k)Gy(p, p, p)

Gy(p, Tp, Tp) = 0.

It follows that
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. case iii) max [(Gb(xn,p,p)), Go(Zn, Tpi1, Tnir), Go(p, T, Tp)] = Gy(p, Tp, T'p) then we have

Gb(xnv Tp7 Tp) S S[Gb<xna Tn+1, xn-‘rl) + k¢Gb(p7 Tpa Tp)]

S S[Gb<xna Tn+1, xn-&-l) + ka(p> Tpa Tp)]?

Letting n — oo, we conclude that

Gy(p, Tp, Tp) < s|Gs(p,p,p) + kGy(p, T'p, Tp)],

Go(p, Tp, T'p) = skGy(p, Tp, Tp).
It follows that

(1 — sk)Gy(p, Tp, Tp) <0
Gb(p7 Tp, Tp) =0; sk € [07 1)
p="Tp.
This is contradiction to Tp # p. Therefore p is a fixed point of T. For uniqueness suppose
q # p and ¢ is another fixed point of T, and T'q = q.
Gy(xn, Tq, Tq) < 8[Go(2n, Tni1, Tni1) + Go(Tni1, Tq, Tq)]
<s [Gb(xna Tyt Tng1) + kQS(ma:E [(Gb(xna 4,4)); Go(Tn; Tnt1, Tng1)
Gi(4,Tg, Ta), Go(q, Tg, Tq)] )]
<Ss |:Gb(xna Tn+1, xn+1) + k¢(max [(Gb<xn7 q, Q))a Gb<xn7 Ln+1s anrl)

Gy(q, Tq, TQ)D]

This is same as equation (3.10) we replace p by ¢ in equation (3.10) and as n — oo, z, — p
and T'q = q.

To show that T is Gy-continuous at p, let {y,} be a sequence in X such that lim, . y, = p.

Consider

Go(0; T(Yn), T(yn)) < Go(Tp, T (Yn), T'(Yn)

< k¢ (ma:p [Gb(pa Y Yn)s Go (0, T, TD), Go (Y, T (Yn), T(Yn))s Go(Yn, T (Yn), T(yn))} > .
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Asn — 0o,y, = p

Go(p, T(yn), T(yn) < kGy(p, . p)
Go(p, T(yn), T(yn) = 0.

Thus

T(y,) =p="Tp.

It is proved that T is Gp-continuous at p.

Corollary 3.8. Let (X,Gy) be a complete Gy-metric space and let T : X — X be a mapping

satisfying for some m € N
Gy(Tz, Ty, Tz) < kmax [Gb(x,y,z),Gb(x,Tx,Tx),Gb(y,Ty,Ty), Gb(z,Tz,Tz)}; (3.11)

for all x,y,z € X and sk € [0,1). Then T has a unique fized point (say u, i.e., Tu = u), and

T is Gy-continuous at p.

Proof: To prove this corollary we define the ¢ function as ¢ : [0,+o00] — [0,+0oc] be a
nondecreasing function with lim,, ;0 ¢"(t) = 0 for all ¢ € (0,4+00) and ¢(w) = kw. Clearly ¢
is nondecreasing function with lim,, ,, . ¢™(t) = 0 for all ¢ € (0, +00).

Since Gy(Tx, Ty, Tz) < k’gb(ma:v [Gb(x,y, 2), Gy(z, Tz, Tx), Gb(y,Ty,Ty),Gb(z,Tz,Tz)}>; for
all z,y,z € X. Therefore by Theorem (3.7) we get required result.

Corollary 3.9. Let (X, Gy) be a complete Gy-metric space and let T : X — X be a mapping

satisfying for some m € N

M(z,y,2)
Gy(Tx, Ty, Tz) < ——————;
b( x? y’ Z) — 1+M(,ﬁl’,"y’ Z)’

where M (z,y, z) = kmax [Gb(x,y, 2), Gy(z, Tz, Tx), Gy(y, Ty, Ty), Gb(z,Tz,Tz)}; forallx,y, z €

(3.12)

X. Then T has a unique fized point (say u, i.e., Tu = u),and T is Gy-continuous at p.

Proof: To prove this corollary we define the ¢ function as ¢ : [0,+o0c] — [0,+0oc] be a
nondecreasing function with lim,, ;, o ¢"(t) = 0 for all ¢ € (0, +00) and ¢(w) = 1= Clearly
¢ is nondecreasing function with lim,, ,,, . ¢"(t) = 0 for all ¢ € (0, +00).

Since Gy(Tx, Ty, Tz) < ¢(M(z,y,2)); for all z,y,z € X. Therefore by Theorem (3.7) we get

required result.

Example 3.10. Let us define Gy(z,y,2) = ‘:r; — y| + ‘y — z| + ‘x — z‘ and let x € X. Then
(X, Gy) be a complete Gy-metric space. Let T'(x) = £. Without loss of generality, we assume

x>y > zand ¢(t) =t Then
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T z

3

Go(Tx, Ty, Tz) = z——)—i—‘———

1

=2l =yl +ly— 2l + o = =]

1

< Sl =yl +ly =2l + 1z - 2]
= K(Gy(z,,2))

T z

3 3

Gy(Tz, Ty, Tz) = g——’—i—‘———
< _Z
< 2% - 3)
= k max [Gb(l', Y, 2)7 Gb(fﬁ, TZE, TZE), Gb(yu Ty7Ty>7 Gb(Txv Y, Z)]

= ko (maa: [Gb(az, y,2),Gy(z, Tz, Tx), Gy(y, Ty, Ty), Gp(2, Tz, Tz)] >

Example 3.11. Let us define Gy(z,y, 2) = |2:r; - y‘ + |2y - z| + !22 — x! and let z € X. Then

(X,Gy) be a complete Gy-metric space. Let T'(x) = £. Without loss of generality, we assume

x>y > zand ¢(t) =t Then

(i)
2z «x

3 3

2
Gy(Tx, Ty, T=z) —‘——— + Ey_g

%UQ:c—y‘ + |2y— z‘ + |2z—x‘]
= kGy(z,y, 2)
= kqﬁ(Gb(x,y,z)).

(i)
2z y 2y oz 2z x
Gy(Tx, Ty Tz)=|— — = = — = —— =
[|2 :v+291: £L‘+21‘ |]
Tr— — —_—— = T
3 3 3 3

k(maa: [Gb(x Y, 2), Gb(:c,T:U,Tx),Gb(y,Ty,Ty),Gb(z,Tz,Tz)D

= k¢ (max [Gb(x, y,2),Gy(z, Tx, Tx), Gy(y, Ty, Ty), Gy(2, Tz, Tz)] ) .
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Example 3.12. Let us define Gy(z,y,2) = |t —y| + |y — 2| + |r — 2] and let x € X. Then
(X, Gy) be a complete Gy-metric space. Let T'(x) = 5. Without loss of generality, we assume
x>y > zand @§(t) = £ Then

(i)

Go(Tw, Ty, T2) = |3 = 5| + |2 = 2| +|5 - 2
1
= slle—yl+ly =2l +]e 2]
<2 % glle =yl +ly— 2l +1e 2]
3 2
=k [%Gb(x, Y, z)}

= ko(Gy(z,y, 2)).

(i)

x z x z
T
<2k) ——‘
< 2k|(z - 3)
2 1
:—x—[Q‘m—zu
3 2 3

1
=k |:§ max [Gb(l'7 Y, 2)7 Gb(l‘, T[L‘, T"L‘)a Gb(y; Ty, Ty), Gb(T[L‘, Y, Z)}}

— ko (maw [Gy(2, . 2), Go(w, T, Ta), Goly, Ty, Ty), Go(, T2,T2)] ),

Example 3.13. Let us define Gy(x,y, 2) = |2a: — y} + |2y — z| + !22 — x! and let z € X. Then
(X, Gy) be a complete Gy-metric space. Let T'(x) = £. Without loss of generality, we assume
x>y > zand §(t) = § Then
(i)

2v y 2y z 2z x

Gy(Tz, Ty, Tz) = 3 3 + 33 + 53

= %U%—yh— 12y — 2| + ‘22—1’”
< k(%G,{x,y,z))

= k¢<Gb(x,y, z))
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(i)

2 Y 2y =z 2z
e Ty T2 =5 =35 ~3lt13 3
k x 2z
<l =5l [5 -5l 5 -l
= k( [Gb(mvyv Z)a Gb(vaxaTx)a Gb(yaTy7Ty)a Gb(Z,TZ,TZ)})

= ko (max [Gb(:v, y,2),Gy(z, Tz, Tx), Gy(y, Ty, Ty), Gp(2, Tz, Tz)] ) :

Example 3.14. Let us define Gy(z,y,2) = |[v —y|+ |y — 2| + |z — 2] and let z € X. Then
(X, Gp) be a complete Gy-metric space. Let T'(x) = £. Without loss of generality, we assume

x>y > zand @(t) = £ Then

(i)

Gy(Tx, Ty, Tz) = z——‘+’___ + g_g
1
= o=yl +ly 2l + o 2]
<2 eyt — e -]
Sgxglle—yltly—z+le—=
1
:k’|:2Gb(fL',y,Z):|

= k¢(Gb(m7 Y, Z))

(if)

Gy(Tz, Ty, Tz) = f——M-__ +z-2
<2k:) ——‘
(@ =3
2 1
:—x—[2‘x—§H
3 2 3

= k[ max [Gb(:v Y, 2), Gb(x,Tx,Tx),Gb(y,Ty,Ty),Gb(Tx,y,z)H

= ko (mam [Gb(x, y,2),Gy(z, Tz, Tx), Gy(y, Ty, Ty), Gp(2, Tz, Tz)] >

Example 3.15. Let us define Gy(z,y,2) = |2x — y| + ’2y — z’ + ‘22 — x} and let x € X and
Gi(x,y,2) = G(z,y, 2)P; where p > 1 is a real number.Then (X, G}) be a complete Gy-metric

space. Let T'(z) = £. Without loss of generality, we assume z >y > z and ¢(t) = § Then



14 D. R. NHAVI AND C. T. AAGE

Gy(Tx, Ty, Tz) = G(Tx, Ty, Tz)?

2z x

3 3

p
3 3 3 3 )
= p“Qw—y|+‘2y—z|+‘2z—x|r

()Zx Y 2y =z

< k(%Gdaz,y,z))
= k‘(b(Gb(x,y, z)>

Gy(Tx, Ty, Tz) = G(Tx, Ty, Tz)?

_'<’ _Yl, 2y =z n 2z _}x\)p
N 3 3 3 3
T 2x P
< k(3 ['293—‘\*’——‘ +5 =)

= k( —max [Gb(x, y,2), Gy(x, Tz, Tx),Gy(y, Ty, Ty), Gp(z, Tz, Tz)}p>

= k¢ (mam [Gb(m, y,2),Gy(z, Tx, Tx), Gy(y, Ty, Ty), Gy(2, Tz, TZ)] ) :
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